2017 Low Vision Conference: Students with Progressive Vision Loss
May 11, 2017
Austin, TX
Retinitis Pigmentosa and Inherited Retinal Disorders

Presented by
Sara Chexal, MD
Retina Consultants of Austin
schexal@e-retina.net

Developed for
Texas School for the Blind & Visually Impaired Outreach Programs
Retinitis Pigmentosa and Inherited Retinal Disorders

Sara Chexal, MD
Retina Consultants of Austin
512-454-5851
schexal@e-retina.net

Retinitis pigmentosa

- Refers to a group of disorders that are inherited, progressive degeneration and eventual atrophy and loss of retinal cells
- Both rods and cones are affected
- Onset ranges from infancy to late adulthood
- RP may be seen in isolation or associated with other conditions ("syndromic RP")

Clinical features

- Nyctalopia
- Visual field loss
- Central vision loss
 - CME
 - Macular atrophy and/or fibrosis
 - Vascular leakage
- Color vision

Fundus appearance

![Fundus Appearance of Retinitis Pigmentosa](image)

Figure 1 Retinitis pigmentosa with pigmented bone spicules, attenuated vessels, and waxy optic nerve
Figure 2 Retinitis pigmentosa showing retinal pigmentation, thin blood vessels and pale optic disc.

Retinitis pigmentosa

Figure 3 Autofluorescence image of Retinitis Pigmentosa

Current treatment

- Vitamin A (controversial)
- Treatment of macular edema with steroid injection
- Low vision aides

Macular edema treatment

Figure 4 Optical Coherence Tomography showing macular edema

Vitamin A therapy

- Controversial
- One true paper that looked at high dose Vitamin A

Retinitis pigmentosa variants
- Usher syndrome (Type I, II, III)
- Bardet-Biedl
- Refsum disease
- LCA
- Bassen-Kornzweig

Choroideremia
- X-linked recessive
- CHM gene is located on X chromosome
- Affects 1 in 50-100,000 people
- Accounts for 4% of blindness

Clinical features of choroideremia
- Nyctalopia in the first decade of life
- Slow progressive vision loss
- Tunnel vision

Choroideremia

Figure 5 Two retinal images: Left showing early choroideremia and right showing advanced choroideremia
Gyrate atrophy

Gyrate Atrophy

- OAT mutation
- Peripheral, central, night vision affected
- May be associated with cataracts
- Usually normal intelligence
- Muscle weakness may be seen
- Autosomal-recessive inheritance

Clinical trials

Clinical trials for RP

- Stem cell trials
- Gene therapy
- Ocular prosthetic implant
Stem cell therapy

Figure 7 Graphic showing how stem cell therapy is done. 1) Culture with growth factors; 2) stem cell division in the culture dish; 3) culture with growth and differentiation factors; 4) cell differentiation into retinal pigment epithelial (RPE) cells; 5) RPE cells injected into the retina of the eye. RPE cells made from human embryonic and iPS cells are at present being investigated for their potential to repair damaged RPE.

Gene therapy

Figure 8 Graphic showing gene therapy: 1) new gene inserted into a virus vector; 2) vector binds to cell; 3) vector packaged into vesicle; 4) vesicle injected into the cytoplasm; 5) vesicle breaks down releasing vector; 6) new gene injected into the nucleus.

- Replacing a mutated gene with a healthy copy of the gene
- Inactivating a mutated gene that is functioning improperly
- Introducing a new gene to help fight a disease
Stem cell therapy (Jcyte pharma)

- Jcyte pharmaceuticals
- Phase I/II clinical trial
- 12 month study collaborating with UC Irvine
- Testing safety and efficacy of single intravitreal injection of human progenitor cells (jcells) in patients with advanced RP.
- 18+ years of age
- Vision 20/63-20/200 in worse seeing eye
- 2 different dosing groups
- Goal is to treat before photoreceptor loss and reactivate lost photoreceptors

Stem cell trial #2 (ReNeuron pharmaceuticals)

- Phase I/II dose escalated open label study
- Conducted at Massachusetts Eye and Ear infirmary (Harvard)
- Assessing safety and efficacy of hRPC (human retinal progenitor cell) cell therapy in 15 patients with advanced RP
- Single subretinal injection
- 1 year study
Argus II implant

- Post-approval study
- Argus II retinal implant
- Vision criteria: LP or NLP
- Needs prior history of useful vision
- Needs to have had prior cataract surgery
- Numerous centers around the country

Figure 9 Image of Argus II implant in the retina

Argus II implant: how it works

Figure 10 Image of the parts of the Argus II: Glasses, camera, glasses coil and VPU

Figure 11 Image of the Argus II and a photo of a young woman wearing the device.
Gene therapy for RP

- Spark therapeutics
- RPE65 mutation
- Phase III study closed and awaiting FDA approval
- 93% of patients enrolled in the study (n=31) responded to gene therapy as assessed by mobility testing at 1 Lux

Gene therapy for Choroideremia #1

- Spark therapeutics
- CHM mutation
- Phase I/II
- Subretinal injection of investigational product

Gene therapy for choroideremia #2

- NightStarRx
- AAV to deliver a wild-type copy of REP1
- Requires retinal surgery

Retrosense optogenetics

- Gene therapy technology
- Designed to confer light sensitivity to retinal nerve cells
- Animal studies only to date
- Human Phase I/II is not yet recruiting

Stargardt’s disease

- Variable inheritance
- Autosomal recessive most common
- ABCA4 mutation
Visual transduction pathway

Figure 12 Graphic related to Vitamin A and the Visual Cycle.

Stargardt presentation

- Blurred vision
- Variable presentation
- Vision ranging from 20/30-20/200
- Earlier onset tends to have more severe prognosis
- Abnormal fundus exam usually prompts referral to retina specialist

Stargardt disease

Figure 13 Stargardt disease with yellow flecks and a beaten bronze macular appearance
Stargardt treatment

- Currently under investigation to slow visual transduction pathway
- Avoid high dose vitamin A

“Gene editing”

- Newest technology
- Published April 21, 2017
- Reprogrammed mutated rod photoreceptors into functional cone photoreceptors restoring vision in two mice models of RP
- CRISPR
- Use AAV vector for gene therapy

Questions? THANK YOU!!

Saradha Chexal, MD
Retina Consultants of Austin
(512)454-5851
schexal@e-retina.net
Texas School for the Blind & Visually Impaired Outreach Programs

Figure 63 TSBVI logo.

Figure 64 IDEA logo